

UNIVERSIDAD DE GUANAJUATO

División de Ingenierías.

Depto. De Geomática, Hidráulica y Geografía

MANUAL DE CALIBRACIÓN EN EPANET Y WATER GEMS PARA LOCALIZAR FUGAS EN UNA RED DE AGUA.

Elabora:

Sonia de la Luz Frías Torres

Clarissa Vázquez Chagoya

Programa Educativo.

Licenciatura en Ingeniería Hidráulica.

INTRODUCCIÓN:

La implementación de programas de cómputo especializados en el Funcionamiento Hidráulico que trabajan con métodos numéricos o algoritmos genéticos, tal es el caso de los programas WaterGEMS de Bentley, y EPANET es una excelente alternativa para el análisis y control de pequeños o grandes sectores de redes de agua potable de las ciudades

PLANTAMIENTO

En este trabajo se presenta un manual práctico de los pasos a seguir para realizar una simulación de una red de distribución de agua experimental en este caso de la Universidad de Guanajuato, como parte del trabajo de investigación titilado Búsqueda de fugas en redes de agua con algoritmos genéticos, validación experimental y aplicaciones. Se representa y calibra numéricamente con el programa Epanet 2.2, para simular los consumos y las fugas. Posteriormente, se valida la herramienta Darwin Calibrator del programa WaterGEMS de Bentley, para la búsqueda de fugas con Algoritmos Genéticos, utilizando los datos experimentales del caudal suministrado, consumos y presiones obtenidos del modelo físico. En el modelo experimental se obtuvieron diferentes escenarios de consumo, representando la variación de la demanda a lo largo del día de una población, se obtuvo una eficiencia física del 60%. Al realizar la validación de la herramienta para la búsqueda de fugas, de acuerdo con la repetitividad de los resultados, y con la localización exacta de las fugas, en la mejor de las condiciones se podría mejorar en un 78% la eficiencia física y se podría recuperar un caudal de 3.20 l/s, con todo lo que implica en lo social, ambiental y económico, dicha cantidad de agua. Por lo que se obtuvo una validación adecuada de Darwin Calibrator.

Palabras clave: WaterGems; Darwin Calibrator; Epanet; Exponente Emisor, fugas.

MARCO CONSEPTUAL

- Epanet es un software utilizado para modelar y diseñar sistemas a presión, de igual forma, es posible realizar el seguimiento de sustancias en la red, también simula fugas a partir de emisores. Epanet resuelve diferentes ecuaciones no lineales simultáneamente utilizando métodos iterativos con el objetivo de alcanzar el equilibrio de red (Si la red no presenta fuga el valor del coeficiente del emisor será igual a cero (Ladino M. 2022).
- WaterGEMS es un software para la ayuda y mejora de cómo se comporta la infraestructura hidráulica como sistema, cómo reacciona a las estrategias operativas y cómo debería crecer a medida que aumentan la población y la

demanda. Desde simulaciones de flujo de incendios y calidad del agua hasta análisis de criticidad y costos de energía. WaterGEMS ofrece todas las herramientas de análisis hidráulico en régimen permanente de Redes a Presión como son el análisis en periodo estático (Steady State), Periodo Extendido (EPS), Análisis de Flujo de Incendio (Fire Flow Analysis) y Análisis de Calidad (Calidad del Agua).

 Darwin Calibrator: es una herramienta de WaterGEMS para encontrar la mejor solución calibrada del sistema en estudio mediante diversos escenarios de diseño y operación.

1. Simulación de la red en Epanet para su calibración.

- Como primer paso es necesario insertar un reservorio con el elemento Reservoir y a partir de este se comienza el trazado de la Red, en este caso para mayor facilidad se insertaron los nodos primero (Juntion) y después se unieron con los respectivos tubos (Pipe) para poder dar la dirección al flujo que se deseaba.
- Al inicio de la Red se instala una bomba con el elemento Pump

- se incluyen las características de todos los elementos en el modelo y poder realizar la calibración adecuada. Una vez que la red está trazada.
 - Dando doble clic en cada línea se incluyen las características de los tubos (longitud, diámetro y rugosidad en función del material)

🐠 EPANET 2.2 - ULTIMA VERSIÓN (1).net File Edit View Project Report Window Help
D ☞ 🖬 릘 🐚 🗙 🛤 🥰 ?① 🎟 🗃 🛛 🕨 ▷ 겉 🕂 Q 의 箕 이 ㅌ Β ㅂ ౮ ⋈ Τ
Pipe 2 Property Value Description ** Tag ** "Length 4.5 "Diameter 101.6 "Roughness 0.17 Loss Coeff. 25 Initial Status Open Bulk Coeff. Value Value Value

 Dando doble clic en los nodos se incluyen sus características de (elevación topográfica y consumo para los que corresponda),

 Para mejor interpretación en la opción de texto agregamos nombres identificativos para los manómetros y nodos de fuga.

Aquellos nodos donde se representaran fugas se asigna un coeficiente emisor (Emitter Coeff.) Para que el programa los reconozca como punto de fuga.

En el presente trabajo se asignaron 4 nodos de fuga.

Tabla 4. Coeficientes emisores calculados.

FA	0.1552
FB	0.2175
F2	1.0005
F3	0.6551

Junction 27		x
Property	Value	
*Junction ID	27	^
X-Coordinate	6237.195	
Y-Coordinate	2178.348	
Description		
Tag		
*Elevation	0	
Base Demand	0	
Demand Pattern		
Demand Categori	e 1	
Emitter Coeff.	0.1552	
Initial Quality		
Source Quality		
		×

 Para ingresar el exponente emisor, se despliegan las opciones de la ventana Proyect en la pestaña de Defaults en el los parámetros hidráulicos (Hydraulics.)

D	efaults			×
	ID Labels	Properties	Hydraulics	
	Option		Default Valu	e
	Relative Vi	scosity	1	^
	Maximum	Trials	40	
ĺ	Accuracy		0.001	
	If Unbalanced		Continuar	
4	Default Pattern		1	
	Demand Multiplier		1.0	
1	Emitter Exponent		0.511	
-	Status Rep	ort	No	~
	Save as c	lefaults for a	ll new project	5
	OK	Car	ncel	Help

Para representar el comportamiento hidráulico de la bomba real en el programa, se asocia una curva (Caudal vs presión) para establecer la carga piezométrica de la cisterna. La pérdida de energía por fricción se calculó con la fórmula de Darcy.

 Para ello en las opciones desplegables de Data se selecciona la opción Curves y se crea una nueva curva, en esta ventana se ingresan los valores de Flow y Head, que se tengan de la bomba real, ya sea un punto o varios.

Curve Editor	×	🐼 Browser 🛛 🛋
Curve ID	Description	Data Mar
3	Datos del 4to escenario	Мар
Curve Type PUMP ~	Equation Head = 27.73-0.02355(Flow)^2.00	Curves 🗸
Flow Head		Junctions
17.16 20.80	25-	Reservoirs
		Tanks
		Pipes
	5-	Pumps
	0 10 20 30	Valves
	V Flow (LPS)	Labels
Load	Save OK Cancel Help	Patterns
		Curves
		Controls
		Options

• Dando doble clic en la bomba asociamos la bomba con el nombre que le asignamos a la curva creada.

Property	Value	
*Pump ID	1	
*Start Node	1	
*End Node	2	
Description		
Tag		
Pump Curve	3	
Power		
Speed		
Pattern		
Initial Status	Open	
Effic. Curve		
Energy Price		

- Finalmente corremos la simulación. Esto es para un escenario estacionario.
 En el icono
- Para un escenario en horario extendido, se asigna el número de horas que se desean simular y se asocia una gráfica de patrones de consumo. Para este caso se simuló para 72 horas.

 Nuevamente se corre la simulación y se verifica que las presiones y caudales correspondan a los reales, de no ser así, se procede a calibrar mediante los coeficientes de pérdidas por accesorios. Estas pérdidas se asignan en las propiedades de las tuberías en la opción de *Loss Coeff.* Y son las sumatoria de pérdidas por tramo derivadas por codos, tés, válvulas, cruceros, reducciones etc.

Pipe 14		x
Property	Value	
*Start Node	36	^
*End Node	37	
Description		
Tag		
*Length	0.77	
*Diameter	101.6	
*Roughness	0.17	
Loss Coeff.	18	
Initial Status	Open	

- Una vez que se logra una buena calibración es decir, que las presiones simuladas por el programa correspondan a las presiones medidas en la red real en cual quiera de los escenarios, se Procede a aplicar la herramienta de Darwin Calibrator de Water GEMS para la búsqueda y validación de estas misma fugas.
- 2. Aplicación de Darwin Calibrator para la Validación de WaterGEMS en la búsqueda de fugas
- Para ello se exporta el archivo de EPANET 2.2 en Formato (.INP) Pero sin los coeficientes emisores indicados, ya que son el objetivo para validar la técnica de búsqueda de fugas que realiza el programa.
- Posteriormente se importa en el programa Water GEMS como archivo de EPANET

No	mbre: Red experimental.			~
	Tipo: Input files (*.INP)			~
∧ Ocultar car	petas		Abrir	Cancelar
0	9	WaterGEMS		
e	Import			
442	WaterGEN/S/HAMMER Database			
New	EPANET			
Claim				
Chrus	Submodelte			
23000-A2	Reputs			
164				
See to				
Jaco to Package				
open term topy				
in a				
Invent-				
atini)				

• En el menú de Analysis vamos a la herramienta Darwin y seleccionamos la opción desplegable de Darwin Calibrator.

• En esta ventana se genera un nuevo estudio de calibración para configurar algunos parámetros.

Para este caso solo se cambiaron los datos de tiempo y multiplicador de demanda.

📑 Darwin Calibrator (calibracion V	Vater fin	al.wtg)					
🗋 🖌 🖻 - 🛋 🐡 📄 💹	🚰 Sear	rch 😮					
New Calibration Study		~					
New Optimized Run	20 fugas	•					
New Manual Run	I						
Field Data Snapshots Roughness Group	s Dema	nd Groups Status Elements	Calibration Criteria	Notes			
🗅 🔄 🗙 🖃 🎽 🕶	Represe	entative Scenario:				Base	
Label		Time	Time From Star (hours)	t	Override Scenario Demand Alternative?	Demand Alternative	Demand Multiplier
All Snapshots (1) New Field Data Snapshot - 2	1	01:00:00 a.m.	(1.000		Base Demand	1.000

- A su vez en este estudio de calibración se genera una nueva pestaña de optimización (New Optimized Run)
- En este apartado, para correr esta optimización es necesario asignar también ciertos criterios de acuerdo a nuestros datos de campo.
- Dentro de la opción de optimización con la demanda se selecciona la detección de fugas en nodos, haciendo variar el coeficiente emisor en un amplio margen, entre 0 y 5.0 (ya que en el experimental se obtuvo un máximo de 1.0). Se estable el número de nodos de fuga que se desea que el programa indique.

Roughn	Roughness Demand Status Reld Data Options Notes										
	Is Active?	Operation	Minimum Demand Multiplier	Maximum Demand Multiplier	Demand Multiplier Increment	Minimum Emitter Coefficient (L/s/(m H20) ^n)	Maximum Emitter Coefficient (L/s/(m H2O) ^m)	Enitter Coefficient Increment (L/s/(m H2O) ^m)	Number of Leakage Nodes		
1	P	Detect Leakage Node	0.500	1.500	0.100	0.000	5.000	0.010	4		

- En la pestaña de opciones tenemos diferentes variables de las cuales se realizaron variaciones en los parámetros: Maximum Trails, Non-Improvement Generations y Population Size (como variable principal se variaron entre 500 a 2000 de tamaño de población).
- En el criterio Solutions To Keep se indica el número de soluciones posibles que se desea que el programa encuentre para cada optimización. En este caso para todas las optimizaciones se indicaron 10 soluciones.
- A partir de estos valores establecidos las soluciones se aproximaran mejor, según sea la tendencia que sigan con el aumento o reducción de estos valores.

	0.00+		1 2 3 7
Fitness Tolerance:	0.001		Heoet
Maximum Trials:	1000000		
Non-Improvement Generations:	500		
Solutions to Keep:	10		
Leakage Detection Penalty Factor:	50.000		
Advanced Options			
Maximum Era Number:	6		Reset
Era Generation Number:	150		
Population Size:	1000		
Cut Probability:	1.7	2	
Splice Probability:	90.0	2	
Mutation Probability:	1.0	2.	
Dandam Cand	0.500		

 Una vez establecidos estos parámetros corremos la optimización en el icono de Compute

- Al hacer clic en soluciones, podemos obtener la sumatoria de soluciones encontradas por el Darwin calibrator, un número de condición física (Fitness) más bajo significa un mejor resultado. También podemos explorar la soluciones y la tabla de soluciones y revisar el ajuste realizado por la calibración sobre los resultados simulados.
- Desde la tabla de resultados de cada solución, se pueden identificar tanto como los coeficientes emisores calculados por el programa para cada fuga, como también el número de Nodo donde el programa localizó las fugas.

		Adjustment Group	Teade	Drighul Denand (1,16)	Adjusted Demand (L/N)	Original Emitter Coefficient 8./s/(m.H2C)/1vl)	Adjusted Emitter Coefficient = 8./e/(m H2O) ^m)
ized Run	1	New Demand Group - 1	41	(N/A)	(W)/0	0.000	L.290
	1	New Demand Group-1	29	(W)/Q	(AVA)	0.000	0.580
-	2	New Demand Group - 1	25	(N/A)	(M/M)	0.000	0.400
	4	New Demand Group - 1	21	(%)/4)	(94)40	0.000	0.340
5	5	Nex Demand Group - 1	58	(%/A)	(0s/A)	0.000	0.000
	1	New Demand Group 1	\$7	(N)/9)	(490)	0.000	0.000
	2	New Demand Group - 1	56	(N/A)	06/40	0.000	0.000
	1	New Dersand Group - 1	53	DV/A)	0040	0.000	0.000
4	P	New Demand Group - 1	94	(N/A)	(N4A)	0.000	0.000
	11	New Demand Group - 1	53	(NUA)	(A)(B)	0.000	0.000
	1	New Demand Group - 1	N	ON/NO	01/40	0.000	0.000
	-	New Demand Group - 1	21	(PUP)	.0490.	0.000	0.000
	6	New Demand Group - 1	45	(NUM)	(POR)	0.000	0.000
	1	New Demand Cross-1	12	(high)	0045	0.000	0.000
3	16	Nam Demand Group - 1	42	0043	0643	0.000	0.000
	12	New Dersand Graup - 1	45	DVA3	(NW)	0.000	0.000
	18	New Demand Group - 1	41	DH/A3	(NGA)	0.000	0.000
1	138	New Demand Group - 1	41	(AUA)	(A)	0.000	0.000
	21	New Demand Group - 1	42	06/A3	0640	0.000	0.000

 A partir de aquí de entre todas las soluciones se debe analizar si alguna de ellas se aproxima a detectar las fugas en el las zonas deseadas. En este ejemplo se conocen la ubicación de las fugas desde el inicio, pero siendo el caso donde no se conozcan se deberán analizar otros factores que relacione la ubicación de las fugas con las presiones por ejemplo.

- Se realizan todas las optimizaciones necesarias para llegar al mejor resultado, para ellos es preciso modificar los valores en el menú de opciones a prueba y error. En otras palabras, los parámetros que se deben analizar y modificar para trabajar en el mejor ajuste son el tamaño de la población, el número de soluciones para cada optimización y el número de nodos de fuga.
- Una vez que se llega a la optimización mas precisa, se puede importar el escenario teniendo seleccionada la solución de interés dando clic en el icono y luego aceptamos los términos de la ventana mostrada.

Export to Scenario)	Х				
Export to Scenario						
Export Scenario?						
Name:	New Optimized Run 6 fugas - 2					
Export to Alternatives						
Export Roughn	esses? Export Emitter Coefficients?					
Name:	New Optimized Run 6 fugas - 2					
Export Demands? Name: New Optimized Run 6 fugas - 2						
Base Flow Type:	Even Distribution $$					
Demand Patterns:	Fixed \checkmark					
Export Statuses?						
Name:	Name: New Optimized Run 6 fugas - 1					
	OK Cancel Help					

• De esta manera corroboramos que las fugas se localicen en la misma zona deseada o cerca de la zona.

- Finalmente podemos comparar los resultados mediante las gráficas de optimización de presiones y caudales.
- En la ventana View seleccionamos el icono de New Graphs y buscamos (Find) el nodo de interés del cual se desea comparar las presiones o bien directamente de la red se selecciona el nodo y después se agrega una nueva gráfica.

• Se indica el escenario que se desea comparar y si la gráfica es de presión o caudal.

eries Label Format: \$(Element) - \$	Scenaro) - S(Field)	
Scenarice V [*] W	Benerts 17 17	Fields Fo • 😭 😭 70 • 51
Dave	© Junction □ 0 27	Common Common Pression Pression Pressare Pressare Physical Physical Pressare Dependent Demand Pressare Pressare Dependent Demand Pressare (Pressare Dependent Dependent Demand Pressare (Pressare Dependent Dep

 Dentro del menú de Gráficos en la opción Data se puede agregar los datos reales medidos en campo (Observed Data) para generar la gráfica comparativa.

🛃 Graph: Graph - 11		÷		
Inch	Data			
H I	ō • 🔒 •	2		
	Series Oy	tions.		
	Observed	Data_		
		Pressure		
D	6.00	13.02		
L.	1.00	13.02		
ž	2.00	13.07		
3	3.60	13.02		
4	4.00	13.02		
5	5.00	13.87		

 En el eje de las X se indica el número de horas simuladas, y en el eje de las Y se ingresan los valores observados de presión o caudal según sea el caso.

Observed Data - Graph - 11							×
🗋 🗙 =i 😮		Time Fr	om Start:	0.000		hours	
Label		Y Dimension:		Pressure			~
Observed Data - 1		Numeric Formatter:		Pressure		~	
		Y Unit:	Unit: m H2O				
		Show Series:					[
		Show Se	eries as Line:				ł
		Plot Zer	o Values:	\checkmark			
			🖻 🔓 🛃	4			
			Time (hours)	Y			^
			0.000	13.000			
			1.000	13.000			
			2.000	13.000			
			3.000	13.000			
			4.000	13.000			
			5.000	13.000			
			6.000	6.120			
			7.000	6.120			
			8.000	6.120			
			9.000	6.120			÷

En el grafico se muestra el ajuste que realiza el programa entre datos observados y los calculados por la optimización.

Bibliografía.

Ladino-Moreno, E. O., García-Ubaque, C. A. y García-Vaca, M. C. (2022). Estimación de fugas en tuberías a presión para sistemas de agua potable mediante redes neuronales artificiales y Epanet. Revista Científica, 43(1), 2-19.