DETERMINACIÓN DE PROXIMIDAD MEDIANTE EL ANÁLISIS ESTADÍSTICO DE IMÁGENES DE PROFUNDIDAD

VERANO DE LA CIENCIA 2023

DIVISIÓN DE INGENIERÍAS CAMPUS IRAPUATO SALAMANCA (DICIS)

Autores

Juan Carlos Rodríguez Ceballos

José Manuel Silva Alanís

Carlos Abraham Robles Sauceda

Encargado Del Proyecto

Dr. José Luis Contreras Hernández

Descripción general

En este proyecto se desarrollará un programa para el análisis estadístico de imágenes de profundidad obtenidas mediante una cámara Intel en ambientes de interior y exterior. Se adquirirán imágenes en los distintos entornos presentando obstáculos típicos de cada uno. El programa desarrollado permitirá determinar la presencia de obstáculos a partir de una distancia establecida por el usuario procesando digitalmente las imágenes fuera de línea.

Justificación del equipo

El desarrollo de un algoritmo que determine la presencia de obstáculos mediante análisis estadístico de imágenes en ambientes de interior y exterior aportará para el desarrollo futuro de proyectos enfocados en mejorar la adaptación en distintos medios de personas con problemas de visión.

Objetivos

Crear un manual de conexión de cámara, lectura de imágenes y procesamiento del programa creado con el fin de facilitar su uso en proyectos de investigación futuros.

Resultados esperados

Redacción de un manual tutorial con la descripción de conexiones de cámara, lectura de imágenes y procesamiento del programa creado.

Requisitos

- Jupyter.
- Matlab R2020a o superior.
- Cámara Intel Realsense Depth Camera D415.

Instructivo

- 1. Se inicia Jupyter desde CMD con el comando *jupyter notebook* y se corre el archivo "realsense_one_cam.ipynb".
- Se corre el programa por partes con el numero de prueba y se selecciona la opción de "capturar imágenes"

	View Inser	t Cell	Kernel	Help	Not Trusted 🥒 Python	3 (ipykernel)
+ 8	2 B 🛧 🕇	▶ Run	C C	Code V		
In [5]	: import os import pyre. import numpj import cv2 import sys def install print('' !pip in def config_ test = return def folders if else	alsense2 a y as np (): Instalando stall -r r folder(): input('Núm test (test): os.path.ex print('La e: print('La s.mkdir(os.mkdir(s rs paquete equireme ero de p ists('ou s carpet e crearc 'output/	<pre>s') nts.txt rueba') tput/') and os.path.exists('output/color/ ') and as existen.') n las carpetas output, color y depth.') color/') depth/')</pre>	<pre>I os.path.exists('output/depth/'):</pre>	
	def camera(pipelin	test): e = rs.pip	eline()			

Al seleccionar esta opción se inicia una ventana con la foto que está tomando junto con la imagen de profundidad.

Ilustración 2. Imagen original y de profundidad.

Estas fotos se almacenan en la carpeta "Output" en las carpetas "color" y "depth" respectivamente.

 Se ejecuta el programa "processImg.m" en Matlab. Es necesario tener dicho programa junto al programa "varianzaMat.m" en la misma carpeta en donde se tienen las imágenes obtenidas.

Para importar las imágenes para ejecutar el programa se cambian los comandos

ori=imread('prueba_220_color.png'); imshow(ori); %Foto original a color img=imread('prueba_220_depth.png'); %foto de profundidad

con los nombres y formato de archivo respectivos. Con estos ajustes se corre el programa.

4. Al ejecutar el programa se abren dos ventanas mostrando la imagen original junto a la imagen de profundidad negativo como se muestra a continuación:

Ilustración 3. Imagen original y de profundidad negativa.

5. El programa invierte la imagen de profundidad y la divide en 9 segmentos de las mismas dimensiones. La imagen es de resolución 480x640.

Ilustración 4. Segmentos de la imagen de profundidad.

6. El programa lee cada una de las secciones de la imagen y calcula el promedio, la varianza y la desviación estándar de la densidad de pixeles blancos. Dichos valores finalmente se vuelven a seleccionar los segmentos con mayor promedio, varianza y desviación respectivamente y coloca el valor probabilístico del objeto y su ubicación dentro de la matriz.

Command Window				
	Ubicacion p 1.0e+04	or promedi *	0	
	3.3916	0	0	
	2.6861	0	0	
	3.3879	0	0	
	Ubicacion p	or varianz	a	
	1.0e+04	*		
	3.4320	0	0	
	2.7433	0	0	
	3.4947	0	0	
	Ubicacion p	or des v iac	ion	
	185.2572	165.6287	186.9413	
	0	0	0	
	0	0	0	

Ilustración 5. Ubicación del objeto por cálculos probabilísticos.

Ejemplos

Ubicacion por promedio 1.0e+04 *

6.3806	0	0
6.2972	0	0
6.1379	0	0

Ubicacion por varianza 1.0e+04 *

0	0
0	0
0	0
	0 0 0

Ubicacion por desviacion 255.2018 254.4631 251.4753 0 0 0 0 0 0

0	2.8196	0
0	2.9641	3.4359
6.3548	6.3092	6.2899

Ubicacion por varianza 1.0e+04 *

0	2.9548	0
0	3.1517	3.6224
6.5535	6.5843	6.6150

0	0	255.9980
171.8964	177.5295	256.5983
0	190.3250	257.1971

4.4153	0	0
5.4399	3.6429	2.7068
6.3600	6.3455	6.3324

Ubicacion por varianza 1.0e+04 *

4.3980	0	0
5.5731	3.8500	2.8820
6.5283	6.5843	6.6150

Ubicacion por desviacion 209.7152 236.0750 255.5049 0 196.2132 256.5983 0 169.7653 257.1971

2.7195	0	0
0	0	0
4.2024	2.6114	6.4488

Ubicacion por varianza 1.0e+04 *

2.7026		0	0
0		0	0
4.3573	2.71	158	6.6040
Ubicacion	por	des	viacion
164.3953		0	208.7425
0		0	164.7958
0		0	256.9815

0	0	0
0	0	0
3.4322	3.4030	3.4879

Ubicacion por **v**arianza

1.0e+04 *

0		0	0
0		0	0
3.5799	3.59	954	3.7005
Ubicacion	por	des	viacion
0		0	189.2072
0		0	189.6158
0		0	192.3674

2.7391	0	0
2.8303	0	0
4.0964	2.2802	0

Ubicacion por varianza

1.0e+04 *

2.7943	0	0
2.9042	0	0
4.2589	0	0

sviacion	por des	Ubicacion
206.3716	70.4170	167.1619 1
155.5370	0	0
0	0	0

0	0	0
0	0	0
5.0971	3.7801	3.7938

Ubicacion por varianza 1.0e+04 *

0	0	0
0	0	0
5.2439	3.9293	3.9254

0	0	228.9950
0	0	198.2239
0	0	198.1275

3.5872	3.0905	3.5112
6.2013	2.2677	0
6.4262	4.2410	4.2145

Ubicacion por varianza

1.0e+04 *

3.6923	3.1662	3.5945
6.4052	0	0
6.5535	4.3944	4.4519

192.1537	253.0850	255.9980
177.9381	152.8162	209.6286
189.5906	0	210.9962

0	0	0
2.6717	0	2.3034
5.1360	3.7040	5.6476

Ubicacion por varianza 1.0e+04 *

0	0	0
2.7156	0	0
5.2915	3.8903	5.8470

230.0316	164.7900	0
197.2381	0	0
241.8055	153.7948	0

3.3916	0	0
2.6861	0	0
3.3879	0	0

Ubicacion por varianza

1.0e+04 *

3.4320	0	0
2.7433	0	0
3.4947	0	0

Ubicacio	n por	desv	iacion
185.2572	165.62	87	186.9413
0		0	0
0		0	0

0	0	2.1578
0	0	0
3.5569	3.4148	4.8936

Ubicacion por varianza

1.0e+04 *

0	0	0
0	0	0
3.7212	3.6092	5.1906

0	0	192.9031
0	0	189.9783
0	0	227.8278

0	0	0
0	0	2.0688
3.2790	3.0581	4.9754

Ubicacion por varianza

1.0e+04 *

0	0	0
0	0	0
3.4305	3.2342	5.2779

0	0	185.2159
0	0	179.8396
0	0	229.7365

